direct product, metabelian, supersoluble, monomial, A-group
Aliases: D92, C9⋊1D18, C92⋊C22, C9⋊D9⋊C2, (C9×D9)⋊C2, (C3×D9).S3, C32.6S32, C3.1(S3×D9), (C3×C9).4D6, SmallGroup(324,36)
Series: Derived ►Chief ►Lower central ►Upper central
C92 — D92 |
Generators and relations for D92
G = < a,b,c,d | a9=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 589 in 59 conjugacy classes, 17 normal (5 characteristic)
C1, C2, C3, C3, C22, S3, C6, C9, C9, C32, D6, D9, D9, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, D18, S32, C3×D9, S3×C9, C9⋊S3, C92, S3×D9, C9×D9, C9⋊D9, D92
Quotients: C1, C2, C22, S3, D6, D9, D18, S32, S3×D9, D92
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)
(1 9 8 7 6 5 4 3 2)(10 11 12 13 14 15 16 17 18)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 10)(8 11)(9 12)
G:=sub<Sym(18)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14), (1,9,8,7,6,5,4,3,2)(10,11,12,13,14,15,16,17,18), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,10)(8,11)(9,12)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14), (1,9,8,7,6,5,4,3,2)(10,11,12,13,14,15,16,17,18), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,10)(8,11)(9,12) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14)], [(1,9,8,7,6,5,4,3,2),(10,11,12,13,14,15,16,17,18)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,10),(8,11),(9,12)]])
G:=TransitiveGroup(18,140);
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | 9A | ··· | 9F | 9G | ··· | 9U | 18A | ··· | 18F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 9 | 9 | 81 | 2 | 2 | 4 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 18 | ··· | 18 |
36 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D9 | D18 | S32 | S3×D9 | D92 |
kernel | D92 | C9×D9 | C9⋊D9 | C3×D9 | C3×C9 | D9 | C9 | C32 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 6 | 6 | 1 | 6 | 9 |
Matrix representation of D92 ►in GL4(𝔽19) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 7 | 14 |
0 | 0 | 5 | 2 |
18 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 5 | 2 |
0 | 0 | 7 | 14 |
5 | 12 | 0 | 0 |
7 | 17 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 2 | 0 | 0 |
14 | 7 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
G:=sub<GL(4,GF(19))| [1,0,0,0,0,1,0,0,0,0,7,5,0,0,14,2],[18,0,0,0,0,18,0,0,0,0,5,7,0,0,2,14],[5,7,0,0,12,17,0,0,0,0,1,0,0,0,0,1],[12,14,0,0,2,7,0,0,0,0,18,0,0,0,0,18] >;
D92 in GAP, Magma, Sage, TeX
D_9^2
% in TeX
G:=Group("D9^2");
// GroupNames label
G:=SmallGroup(324,36);
// by ID
G=gap.SmallGroup(324,36);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,404,338,3171,453,1090,7781]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations